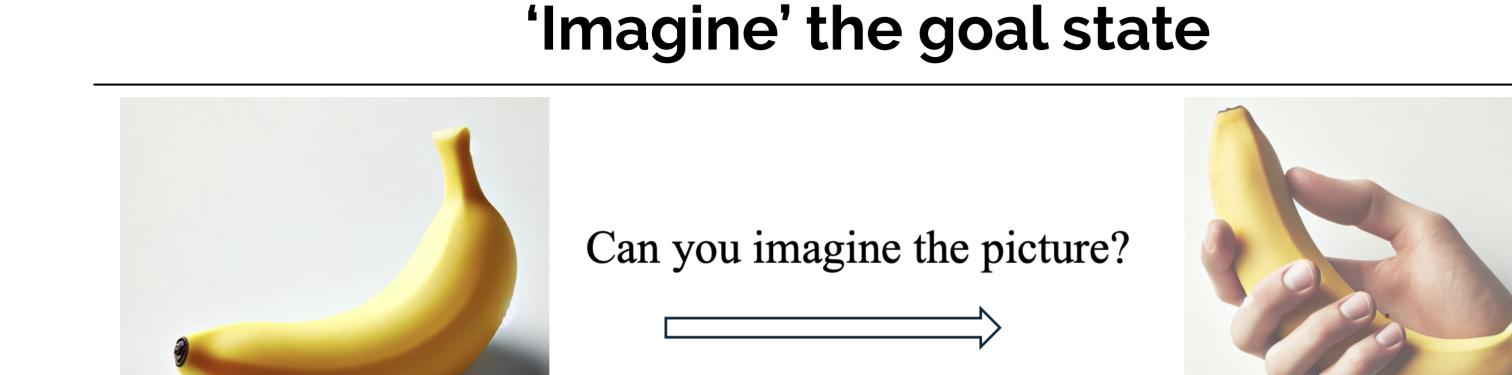


Imagination Policy:

Using Generative Point Cloud Models for Learning Manipulation Policies

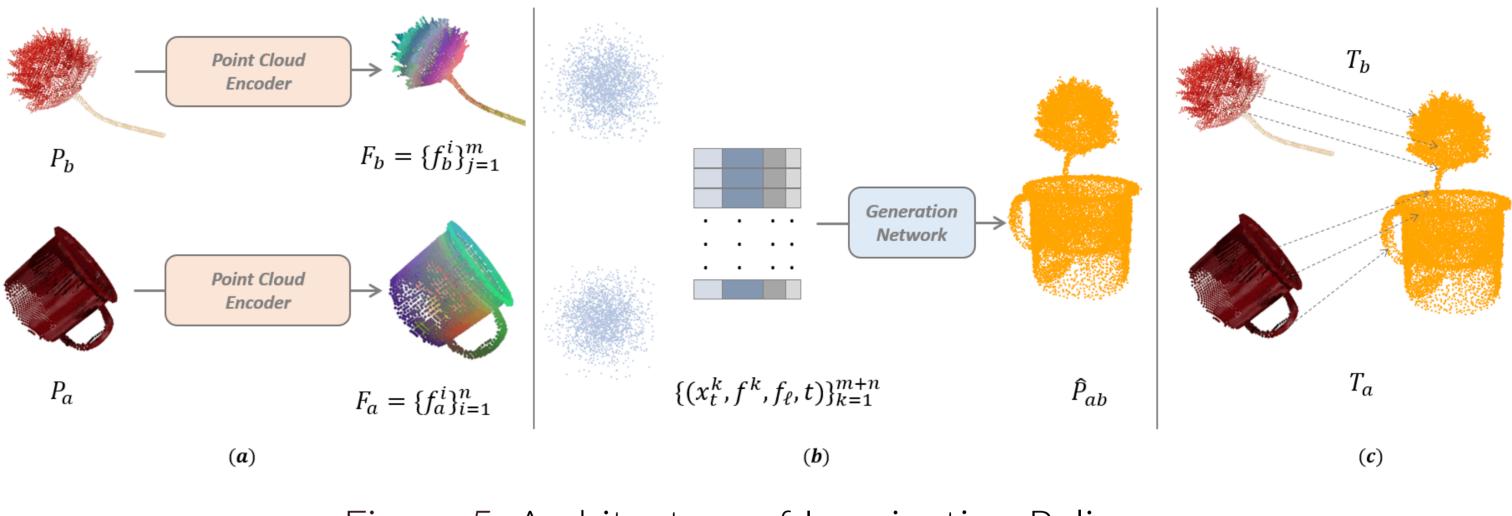
Haojie Huang¹ Karl Schmeckpeper^{†2} Dian Wang^{†1} Ondrej Biza^{†12} Yaoyao Qian^{‡1} Haotian Liu^{‡3} Mingxi Jia^{‡4} Robert Platt¹² Robin Walters¹

¹ Northeastern Univeristy ² Boston Dynamics AI Institute ³ Worcester Polytechnic Institute ⁴ Brown Univeristy †‡ Equally Contribution



Overview of Imagination Policy

Architecture Design: : From observation to imagination



"grasp the banana with hand"

(1). Human can imagine the goal states during planning and perform actions to match those goals.

(2). Imagination Policy generates point clouds to imagine desired key states (pick, preplace, place) which are then translated to actions.

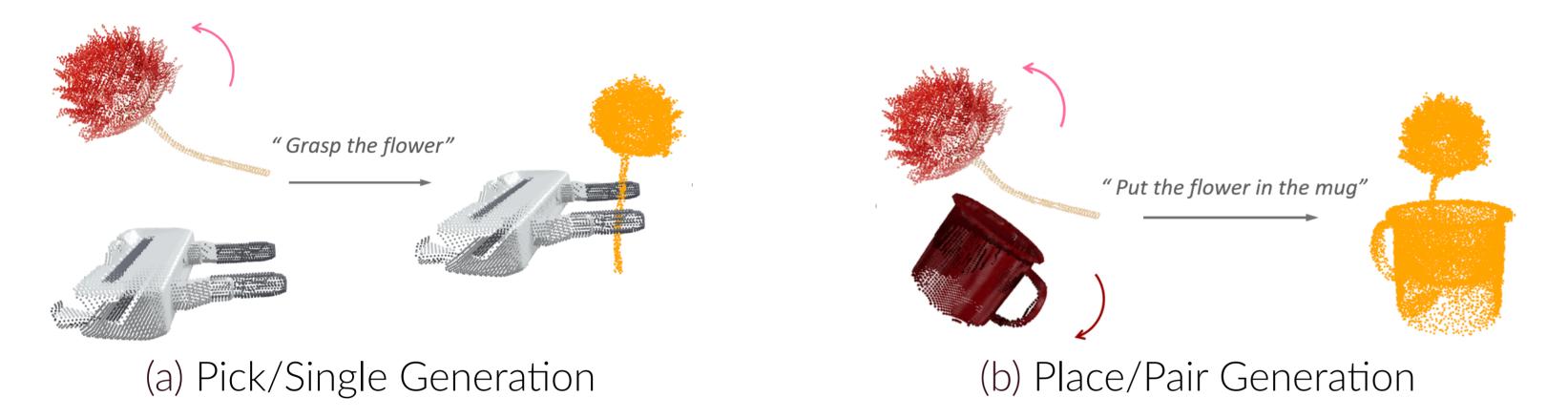


Figure 1. Illustration of pick generation and place generation. The generated points are colored in orange. A key symmetric property: different rotated observations will not affect the imagined state.

Figure 5. Architecture of Imagination Policy.

We factor action inference into two parts, point cloud generation (Figure 5ab) and transformation inference (Figure 5c).

(a). Encoding the observed point features as F_a and F_b .

(b). Conditional point cloud generation from random Gaussian noise.

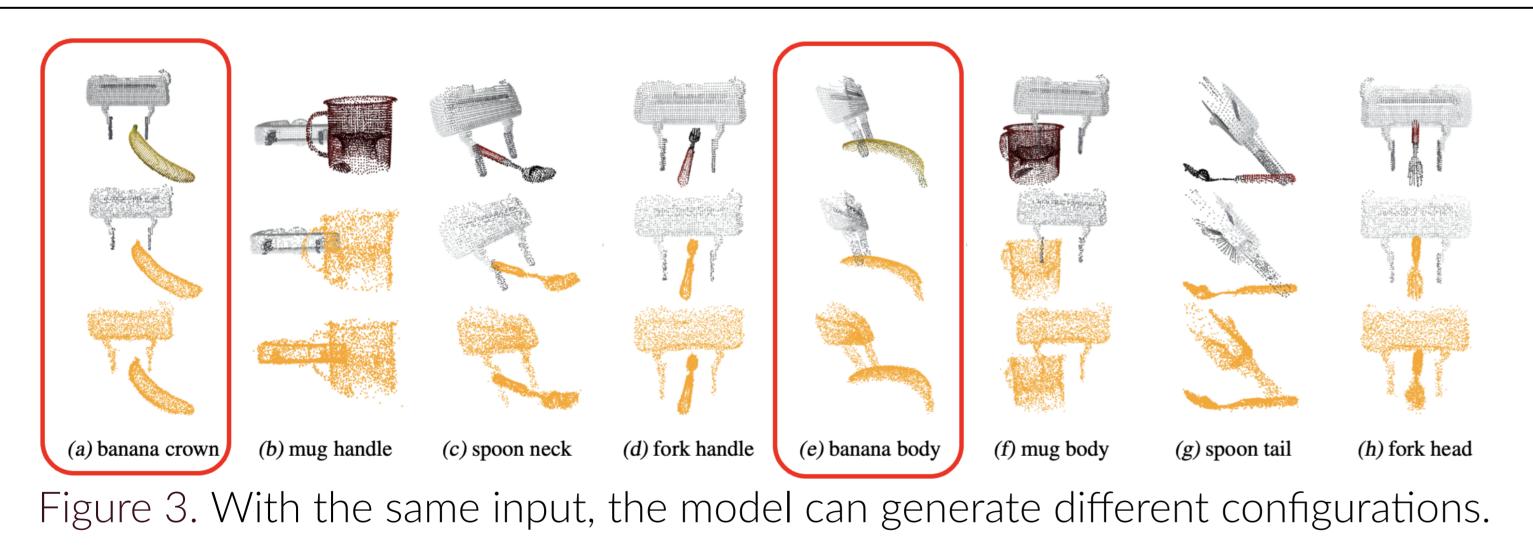
(c). Estimating the rigid transformation (T_a and T_b) from the observed point cloud to the generation using correspondence.

Pick/place actions can be calculated with the two rigid transformation matrices. This transforms action inference into a local generative task.

Keyframe action inference: pick, preplace and place

Figure 2. Trajectory of the pick generation process conditioned on the gripper point cloud. ("grasp the banana by the crown").

Multi-modal capability of generation



Real-world Experiments: with only 10 demos

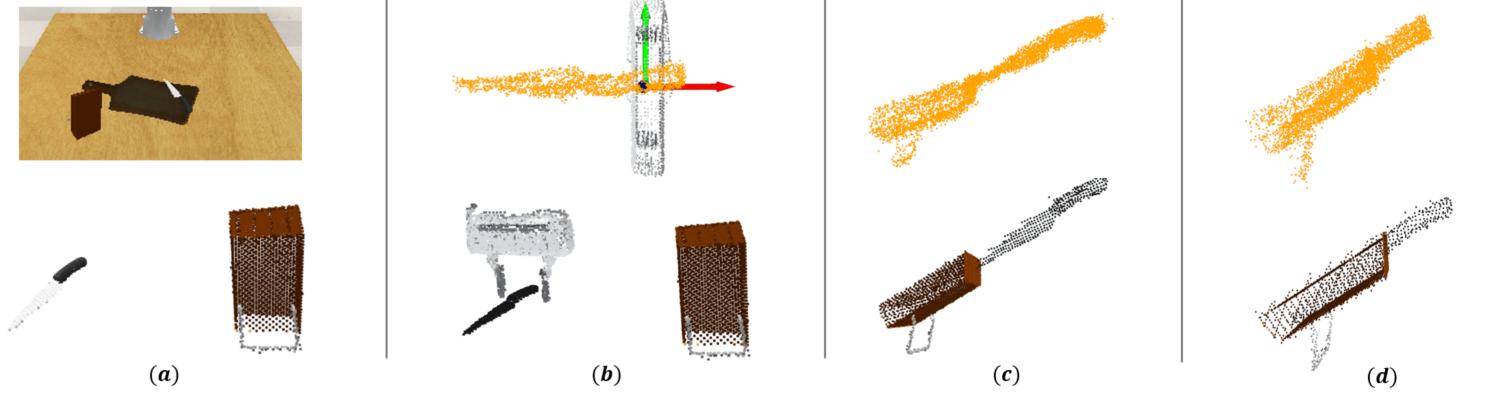
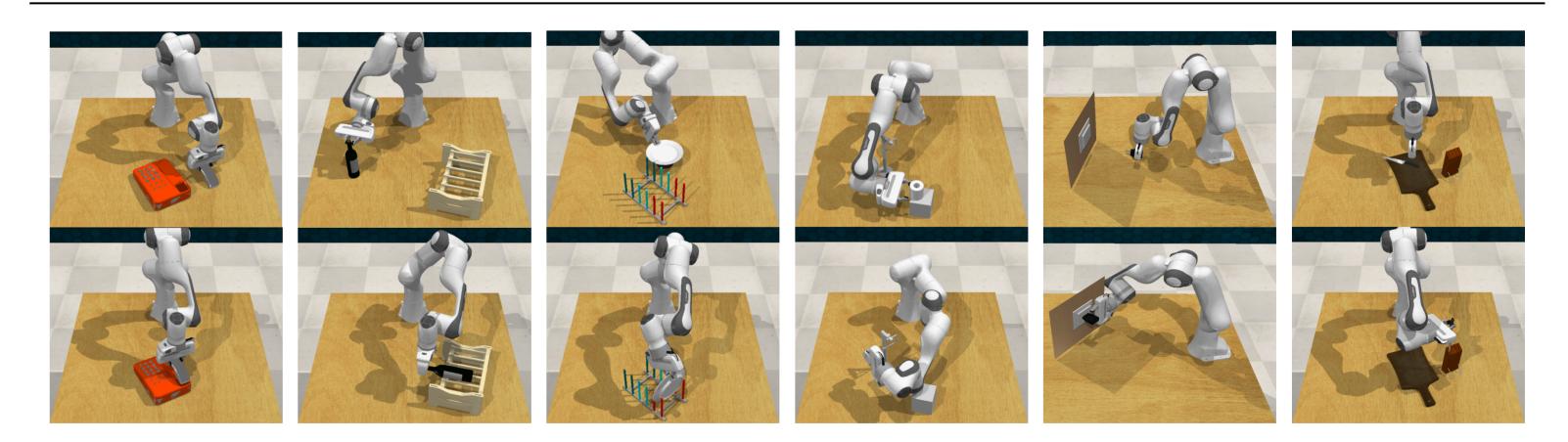
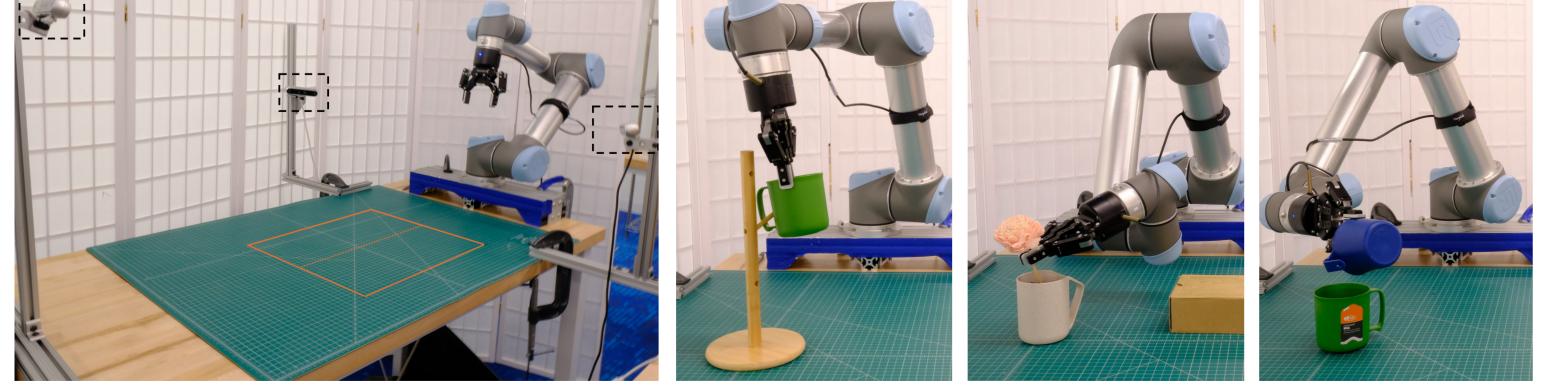


Figure 6. Illustration of the keyframe pipeline on *Insert-Knife*: (a) the RGB-D image and the segmented point clouds, (b) pick generation, (c) preplace generation, and (d) place generation.

Simulated Experiments: single model for multitasks





(a) Workspace Settings

(b) Mug-Tree (c) Plug-Flower (d) Pour-Ball

Task	# demos	# pick completions	# place completions	# completions	success rate
Mug-Tree	10	15/15 (100%)	12/15 (80.0%)	12 /15	80.0%
Plug-Flower	10	15/15 (100%)	14/15 (93.3%)	14/15	93.3%
Pour-Ball	10	14/15 (93.3%)	14/14 (100%)	14/15	93.3%

 Table 1. Performance on real-world experiments.

Figure 7. 3D pick-place tasks from RLBench

Model	# demos	phone-on-base	e stack-wine	put-plate	put-roll	plug-charge	r insert-knife
Imagination Policy Imagination Policy	1 5	4.00 78.67	2.67 97.33	1.33 0	2.78 1.39	0 24.00	0 38.67
Imagination Policy RVT PerAct 3D Diffusor Actor RPDiff	10 10	90.67 56.00 66.67 29.33 62.67	97.33 18.67 5.33 26.67 32.00	34.67 53.33 12.00 12.00 5.33	23.61 0 0 0	26.67 0 0 0	42.67 8.00 0 2.67
Key-Frame Expert		98.67	100	74.6	56	72	90.6

Table 2. Performance comparisons on RL benchmark. Success rate (%) on 25 tests when using 1,5, or 10 demonstration episodes for training. Results are averaged over 3 runs. Even with only 5 demos, our method can outperform existing baselines by a significant margin.

https://haojhuang.github.io/imagine_page